Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways.

نویسندگان

  • E Labbé
  • A Letamendia
  • L Attisano
چکیده

The transforming growth factor-beta (TGFbeta) and Wnt/wingless pathways play pivotal roles in tissue specification during development. Activation of Smads, the effectors of TGFbeta superfamily signals, results in Smad translocation from the cytoplasm into the nucleus where they act as transcriptional comodulators to regulate target gene expression. Wnt/wingless signals are mediated by the DNA-binding HMG box transcription factors lymphoid enhancer binding factor 1/T cell-specific factor (LEF1/TCF) and their coactivator beta-catenin. Herein, we show that Smad3 physically interacts with the HMG box domain of LEF1 and that TGFbeta and Wnt pathways synergize to activate transcription of the Xenopus homeobox gene twin (Xtwn). Disruption of specific Smad and LEF1/TCF DNA-binding sites in the promoter abrogates synergistic activation of the promoter. Consistent with this observation, introduction of Smad sites into a TGFbeta-insensitive LEF1/TCF target gene confers cooperative TGFbeta and Wnt responsiveness to the promoter. Furthermore, we demonstrate that TGFbeta-dependent activation of LEF1/TCF target genes can occur in the absence of beta-catenin binding to LEF1/TCF and requires both Smad and LEF1/TCF DNA-binding sites in the Xtwn promoter. Thus, our results show that TGFbeta and Wnt signaling pathways can independently or cooperatively regulate LEF1/TCF target genes and suggest a model for how these pathways can synergistically activate target genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered expression of Smad proteins in T or NK-cell lymphomas.

PURPOSE Smad proteins mediate cellular signaling through the transforming growth factor-beta family (TGF-betas). Smads 2 and 3 transmit signals from TGF-beta, and Smad4 is a common mediator, as well. However, little is known concerning the expression patterns of Smads in lymphoid tissue. MATERIALS AND METHODS Immunohistochemistry for Smad3 and Smad4 was performed on paraffin-embedded tissue s...

متن کامل

Smad4 cooperates with lymphoid enhancer-binding factor 1/T cell-specific factor to increase c-myc expression in the absence of TGF-beta signaling.

The c-myc protooncogene is a key regulator of cell proliferation whose expression is reduced in normal epithelial cells in response to the growth inhibitory cytokine TGF-beta. Smad4 mediates this inhibitory effect of TGF-beta by forming a complex with Smad3, E2F4/5, and p107 at the TGF-beta inhibitory element (TIE) element on the c-myc promoter. In contrast, cell proliferation and c-myc express...

متن کامل

Smad4 mediates activation of mitogen-activated protein kinases by TGF-beta in pancreatic acinar cells.

Transforming growth factor-beta (TGF-beta) inhibits pancreatic acinar cell growth. In many cell types, TGF-beta mediates its growth inhibitory effects by activation of Smad proteins. Recently, it has been reported that Smad proteins may interact with the mitogen-activated protein (MAP) kinase signaling pathways. In this study, we report on the interactions between the TGF-beta and MAP kinase si...

متن کامل

Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads.

Smad ubiquitin regulatory factor (Smurf) 1 binds to receptor-regulated Smads for bone morphogenetic proteins (BMPs) Smad1/5 and promotes their degradation. In addition, Smurf1 associates with transforming growth factor-beta type I receptor through the inhibitory Smad (I-Smad) Smad7 and induces their degradation. Herein, we examined whether Smurf1 negatively regulates BMP signaling together with...

متن کامل

A novel isoform of human lymphoid enhancer-binding factor-1 (LEF-1) gene transcript encodes a protein devoid of HMG domain and nuclear localization signal.

Lymphoid enhancer-binding factor-1 (LEF-1), a member of the high mobility group (HMG) family of proteins, regulates expression of T-cell receptor-alpha gene and is one of the key regulatory molecules in the epithelial-mesenchymal interactions during embryonic development. Among others, LEF-1 regulates expression of cytokeratin genes involved in formation of hair follicles and the gene encoding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 15  شماره 

صفحات  -

تاریخ انتشار 2000